GIS methods: use and misuse

Linda Beale,
David Briggs, John Gulliver, Kees De Hoogh

Imperial College London

What can GIS do in epidemiology and health risk assessment?

- Capture geographic data
- Integrate data into a common geographic form
- Provide a means for data validation & quality control
- Enable modelling of unmeasured characteristics
- Allow linkage or integration of models
- Provide a basis for health risk assessment

Geographical data

Geographical features can be represented as:

- Points (e.g. address locations, chimneys, pollution monitoring stations)
- Lines (e.g. roads, streams, disease vectors)
- Areas (e.g. administrative areas, land use zones, exposure zones)
 - Regular (grids) or irregular (polygon)
 - Uniform zones (single value) or gradient

Spatial representation is usually the decision of the analyst, not an inherent characteristic of the feature!

GIS and epidemiology

Designing valid geographical studies needs special care

Exposure assessment with GIS

Approach	Description
Overlay	Overlay of e.g. pollution map onto population
Interpolation	Prediction at unsampled locations on basis of measured values in surrounding/nearby areas
Covariate	Prediction at unsampled locations on the basis of relevant covariates for those locations
Dynamic	Prediction of exposures for individuals/groups including time-space variations in pollution & the distribution (or time-activity) of exposed populations
Tobler's first law of geography:	

All things are related to everything else, but near things are more related than those far apart

$$G\left(d_{ij(500)}, \theta_{ij} \mid d_{\max,j}, \sigma_{j}, \phi_{j}^{l}, \phi_{j}^{u}\right) = \frac{1}{\sigma_{j} \cdot d_{ij(500)}^{Pvis} \cdot \sqrt[n]{\sum_{j=1}^{n}} Pout_{j}^{l} \underbrace{v_{j}^{l} t_{j}} \frac{\left(\ln[d_{ij(500)}] - \ln[d_{\max,j}] - \sigma_{j}^{2}]\right)^{2}}{2 \cdot \sigma_{j}^{2}} \cdot 1_{\{\phi_{j}^{u} \leq \theta_{ij} \leq \phi_{j}^{l}\}}$$

Selected modelled exposure

Time

GIS methods: use and misuse

GIS offers many methods and techniques

But...

It is important to consider the approach!

Imperial College London